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Tuning and controlling particle accelerators is time consum-
ing and expensive. Inherently nonlinear, this control prob-
lern is one 10 which conventional methods have not satisfac-
torily been applied; the result is constant and expensive
monitoring by human operators. In recent years, and with
isolated successes, advanced information technologies such
as expert systems and neural networks have been applied to
the individual pieces of this problem. Most advanced infor-
mation technology attempts are also very special purpose
and built in a manner not at all generalizable to other accel-
erator installations. In this paper, we discuss preliminary
results of our research combining various methodologies
from the field of artificial intelligence into a generzal control
system for accelerator tuning. We consider state space search
and adaptive/learning algorithms including fuzzy logic, rule-
based reasoning, neural networks, and genetic algorithms,
We then propose a framework for applying these methods
to a general purpose system for control. Finally, we discuss
future plans for extending the system to include parallel dis-
tributed reasoning, an enhanced object structure, and addi-
tienal heuristic control methods.

1. Problem overview

The goal of this project is to develop a flexible in-
telligent controller that can reduce the tuning time and
the need for human intervention in coatrol of a par-
ticle accelerator, We also wish to produce better and
more stable tunes than those that are now achieved by
human operators. This means that the controller will
be able to maintain the proper tune with smaller beam
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deviations than are currently poessible with human
monitoring.

A number of approaches have been taken to auto-
mate accelerator control {2, 11, 13, 13, 17], with vary-
ing degrees of success. Most effort has been directed
toward solving specific problems for a particular fa-
cility, and little effort has been directed toward devel-
oping more general solutions applicable to the diverse
specifications and tasks of a number of different ac-
celerators. Our goal 1s to produce a control system
capable of handling common control tasks across many
domains as well as a system which can abstract from
specialized control code to more general methods.

Our research consists of two phases: First to build
an accelerator control code capable of handling repre-
sentative tasks which may be simulated through mod-
eling codes. We view this first phase as an important
proof of concept which is a prerequisite to testing
against a real accelerator facility. Once a control con-
cept has been established in simulation, the second
phase of research can go forward. The second phase
involves continued development of ideas and codes
realized in phase one, as well as testing against an ac-
tual accelerator. This paper reports the status of our
research after its first phase concluded with the pro-
duction of a prototype for a general purpose accelera-
tor controller. We end our paper with a summary of
our plans for continuing the effort into its second phase,
and going on-line with control at two accelerator sites.

The architectural frameworl for the controller con-
sists of an expert system that guides specialized
subcontrollers based on the present state of the system
and current tuning goals. We have developed a num-
ber of realistic simulations to test the controller in-
cluding steering and focusing tasks on a periodic line.
We have examined several types of subcontrol tuning
algorithms including backpropagating connectionist
networks, fuzzy logic control, analytic rule systems,
and genetic algorithms.

We introduce the problem of accelerator control by
presenting two typical scenarios in beam transport:
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steering and focusing. In our work to date, we have
modeled a standard transport line inchuding steering
and focusing elements using the TRANSPORT beam
modeling code [1]. The problems modeled included
adverse tuning conditions such as noise (initial beam
fluctuation) and component failure. We designed the
controller using CLIPS [4], an expert system develop-
ment tool developed by NASA, to analyze character-
istics of transport line components and determine ap-
propriate solution strategies depending on current
beamline conditions. Because steering and focusing
are complex tasks which can be partitioned into easier
separate subproblems, they were initially solved inde-
pendently. Because steering and focusing are not in-
dependent on a real beamline, once solutions were de-
veloped for each situation, we developed a combined
steering/focusing solution. The combined solution used
an iterative search to alternately readjust steering and
then focusing, based upon the individual control meth-
ods determined for each.

In the remainder of this section we describe the ac-
celerator tuning problem in more detail, including
descriptions of the steering and focusing problems. We
also describe the TRANSPORT simulation code for
particle accelerators and introduce the Vsystem con-
trol methodology which provides the real-time support-
ing data for our controller. In Section 2 we present top
level search and representation issues for controller
design. In Sections 3 and 4 we present our solutions
for individual control modules. Section 5 summarizes
our current work and points to the future directions for
our phase two efforts.

1.1. Accelerator simulation

We began by developing a computer model 5o sirmu-
Jate steering for prototyping of the intelligent control-
ler. Steering is one of the initial tasks of a beamline
tuner. We first considered the situationin which steer-
ing was controlled by two steering magnets (SMs) sepa-
rated by some distance. Two beam position monitors
(BPMs) downstream (in the sense of beamline flow)
of the steerers monitored steering effects. This situa-
tion is depicted in Fig. 1.

The goal of steering is to adjust the current directed
to the steerers so that the position indication from each
of the BPMs corresponds to some desired offset (zero
for an on-axis tune). Steering must take into account
beamline alignment, electronic offset and drift, and

downstream tuning requirements. In general, there is
jitter in the initial beam coordinates, with some fre-
quency caused by beam-source and mechanical and
electrical variations. The accuracy of the solution is
limited by this jitter as well as the resolution and noise
inherent in both SMs and BPMs.

Beamline steering is 2 basic building block for most
transport lines. Although apparently simple, with few
exceptions, notably Nguyen et 2l. [13] and Himel et al.
[6], steering control has not been successfully impie-
mented as an automatic procedure. This lack of auto-
mation is due, in part, to the great number of param-
eters which can effect steering, including iterative pro-
cedural considerations, peculiarities of particular com-
ponents, and imprecision in measuring devices. In prac-
tice, human operators spend a large portion of their
time establishing and/or maintaining adequate steer-
ing.

The second basic element of beam transport is the
periodic line for focusing. The line consists of alter-
nating focusing and defocussing quadrupole lenses as
shown in Fig. 2. These lenses produce a periodic varia-
tion in the beam envelope and provide a standard means
for transporting a beam over a distance. Beam rtoot
mean square sizes are measured on profile monitors
which directly measure intensity, distribution. The pro-
file monitors, often wire scanrers, contain inherent
inaccuracies due to beam fluctuation during measure-
ment and component error. The relationship between
quadrupole settings and the beam profile is nonlinear,
making accurate real-time tuning difficult even for
human operators.

1.2. TRANSPORT and the Vsystem software

To build an environment for testing our control al-
gorithms we interfaced TRANSPORT [1], 2 standard
accelerator modeling program, to Vsystem [3].
TRANSPORT is a well established tool used by accel-
erator physicists for system design. Itisalsousedasa
tool by expert operators for diagnosis and initial solu-
tion modeling. Vsystem is a commercial software prod-
uct for developing control systems. Vsystem provides
a distributed database and tools for accessing real-time
data, as well as a graphical environment for display
and control of database channels. The combination of
Vsystem as the control interface and TRANSPORT as
the accelerator model provided an automatic system
for effectively simulating the real-time response of an
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Scenario One: Schematic for Beamline Steering
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Fig. 1. Two steering magnets (SMs) direct the beam through the beam pipe. Two downstream beam position menitors (BPMs) monitor the

results.

accelerator and produced a platform for generating re-
alistic data for reasoning by the expert system.

We modified TRANSPORT by adding input types
to relate TRANSPORT model elements to Vsystem
database channels. We then modified TRANSPORT
to automatically recalculate the simulation when input
parameters change. We added noise and error effects
to TRANSPORT data by filtering and varying the data
as it was stored in the Vsystem database. Random
gaussian noise was added to data signals for monitor-
ing devices. Noise characteristics were configurable
from the Vsystem database. Time dependent device
behavior, including magnet ramp-up and delay was also
included in the simulation.

2. Control design issues

We considered many control design issues during
development of the control system including:

i} adaptive vs. non-adaptive control,
ii) optimal vs. “good enough™ solutions,
Hi) scalability,
iv) determination of failure conditions,
v) on-line and off-line learning, and
vi) stability in a heuristic conirol environment.

Our controller design addresses all of these issues
with the possible exception of stability, which is still
an open question. The design includes a top-level de-
cision maker which determines appropriate control

techniques according to the first five issues listed above.
This top-level controller is able to choose from a vari-
ety of control techniques and substitute new ones as
dictated by the system’s states.

2.1. Control of search

Qur design used an expert system at the top ievel
for reasoning and control. An expert systemn is a com-
puter program that can help solve complex problems
using large bodies of facts and procedures gathered
from human experts. These facts and rules are usually
domain-specific knowledge gathered from actual prob-
lem solving experience. This knowledge is not always
derived from equation-based constraints or founda-
tional theorems and may include both theoretical and
heuristic information. Expert systems use rules and
facts to reason and make decisions, often based on
imprecise and incomplete information. Most expert
systems also have the ability to explain their reasoning
and decisions [12].

Placing the expert system at the top level provided
a controller capable of making top-level decisions about
the control problem in a global context, without con-
sidering detailed issues; context specific subproblems
were handled by lower level control moduies. With
direct access to the Vsystem control database, the ex-
pert system used all pertinent information to build a
model for solving the system and to reason about spe-
cific components and more general tuning issues. This
top-down approach reflects an expert’s knowledge in
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Scenario Two; Schematic for Periodic Line
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Fig. 2. Alernating focusing and defocussing quadrupele lenses (QLs) transport the beam along seme distance. Wirescanners (WSs) monitor
beam properties for focusing and SM and BPM components assist in steering. '

a large system and provides a good framework for
buiiding proper knowledge representations.

As the first step in developing a knowledge inten-
sive control solution, we selected an inferencing sys-
tem that allowed easy prototyping and was appropri-
ate to control problems. CLIPS, a forward chaining
expert system shell developed at NASA {4], seemed
appropriate because it allowed easy modification to
production rules. Using CLIPS for prototyping kept
the project focused on building knowledge structures
rather than forcing us to design a complete inferencing
system before we knew the full requirements and im-
plications of the submodules for the final system.
CLIPS was available as C source code that we could
easily integrate with our own control code. CLIPS in-
cluded an object system (COOL), which allowed mir-
roring of objects in C++ code as well as object ori-
ented decision making. Using an object oriented de-
sign, we could make the system representation itself
reflect the views of the human expert when reasoning
about the control of the particle accelerator.

Top level control by an intelligent reasoning sys-
tem assists partitioning both problem and solution
spaces down into wel} defined, easy-to-reason-with
subcomponents. We began by separating beamline
components into groups by both functionality and con-
trol characteristics. By looking at the characteristics
of each of the subcomponents, we developed partitions
that imply certain types of solutions. Once the salu-
tion space has been well partitioned, an appropriate
set of solution technologies is called to operate on those

partitions. The top level reasoning system can focus
on a particular partition and determine the best strat-
egy for its solution with respect to the constraints of its
neighbors.

2.2, The structure of the domain

With the expert system in control, representation of
the accelerator was necessary for partitioning and rea-
soning about the components that make up the
beamline. Creating an object representation of the sys-
tem within CLIPS enabled us to place knowledge about
a specific component within that component’s repre-
sentation while maintaining a separate knowledge base
representing facts and rules describing the entire sys-
tem. An object reasoning model allows appropriate

.encapsulation of knowledge with system objects,

modularity of reasoning, and the possibility of distrib-
uted control.

We built objects for beamline components which
represented the functionality of both physical and con-
trol characteristics. The simplest objects were read-
able components attached to a control database. These
objects included static information about beamline
placement and orientation, as well as methods for data
collection during operation. BPM and wire scanner
objects inherited most of their properties from read-
able component classes. SM and quadrupole magnet
objects were derived from writeable component classes
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which included methods for updating magnet settings,
determining component derivative relationships, and
storing measured control information. Other objects
included power supplies, beam sources, and current
monitors.

CLIPS created beamline objects at run-time to form
amodel for reasoning about the beamline. The expert
system queried the control database to determine what
components were included in the beamline. It then
built an object representation of the beamline both in
CLIPS and C++. The expert system used the CLIPS
object model for dynamicalty partitioning the contro}
problem into solvable pieces and for reasoning about
the beamline. The C++ objects were used for measur-
ing and manipulating actual contre] data and for link-
ing to the Vsystem database. Methods were included
in CLIPS objects for automatically updating mirrored
C++ objects,

3. A control methodolegy

In this section we outline a number of heuristic
methods for control of the partitioned submodules of
the accelerator. These control methods include neural
(or connectionist) networks, fuzzy logic, genetic algo-
rithms, as well as more traditional analytic methods.
In using these heuristic methods we make certain ba-
sic assumptions about the control problem based on
suggestions from Ross [14]:

i) Beamline behavior is observae and control-
lable. The control techniques used here rely
on measurable state input and output variables.

i) There exists a method for encapsulating
knowledge about beamline control within the
heuristic methods. This may come from neu-
ral network learning algorithms, a priori rule-
based knowledge, or inherent knowledge en-
coded in the genetic algorithm population.

iii} One or more solutions exist. The set of con-
trol variables is sufficient to produce correct
beamline behavior.

iv) A “good enough” solution is acceptable. We
will identify a small error range within which
all solutions are valid.

v) Optimality and stability may be shown through
data flow analysis and empirical methods,
rather than through formal proofs. Because
many of these heuristics use inexact methods,

formal proofs may be inappropriate if not im-
possible.

With the exception of v) above, it is apparent that
each assumption must hold in any automatic control
system. It is important to note that in some cases the
“correct” solution may be to determine that the system
is unstable or uncontrollable in its current configura-
tion and shut down the beamline. Keeping these as-
sumptions in mind, we adapted the following methods
for controlling the accelerator system.

3.1. The use of neural network methodology

A neural {or connectionist} network is a group of
individual processing elements, often divided into lay-
ers (or slabs). The neural network, having accepted
sets of data through input nodes, passes the results of
computations between layers and finally on to a set of
output nodes. The individual processing elements,
roughly analogous to biological neurons, cornbine data
from multiple input paths and create an output using a
transfer function. Neural processing elements can be
combined into 2 variety of architectures and, along with
associated training functions, can learn and recall non-
linear functions and patterns. Newral networks have
the additional benefits of being able to function in the
presence of incomplete or noisy data. By their design
they provide for the parallel processing of input val-
ues. Neural processing has been used previously for
aspects of accelerator control, notably by Himel [6],
Nguyen et al. [13].

We used a two layer backpropagation network to
attempt to discover steering magnet (SM) and beam
position monitor (BPM) relationships. We chose a
backpropagation network because of the simplicity of
the task (learning a Hnear relationship in the presence
of noise) and the straightforward representation of the
problem. We were able to directly map network input
and output nodes to BPMs and SMs respectively. The
network was then trained to recognize causal relation-
ships between changes in beam position readings and
magnet adjustments. A fully trained network was given
desired beam position changes as input values. The
network then produced magnet settings that would
cause the appropriate adjustments. The network was
used to solve steering problems by generating the beam
position changes necessary to bring the beam to the
desired tune (represented by the current beam position
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error). The network also produced SM adjustments
that appropriately effected changes in the beam’s di-
rection.

There are twa well known problems with back-
propagation networks that affected our solutions: the
development of a sufficient training set and ensuring
adequate speed of convergence. Because we wanted
the neural network to learn relationships on the nun-
ning beamline and to adjust its weights accordingly,
we attemnpted to train the network on a run-time data
set. We allowed the system to make random adjust-
ments to magnets on the beamline model and then
record the resulting BPM changes. This process pro-
duced areal-time training instance for the network. We
then passed the BPM changes through the network to
generate a set of predicted magnet adjustments. The
system calculated the difference between predicted and
actual magnet adjustments and backpropagated this
error through the system,

Although the neural network was able to fearn SM/
BPM relationships using limited training cycles in some
basic cases, it was not able to converge in more com-
plex cases involving many SMs and BPMs. The net-
work failed in these cases for three important reasons.
First, there was inadequate training data. Because the
network gathered real-time data about the current state
of the system, it could not produce training data fast
enough to evaluate SM/BPM changes in the systen.
Second, while the network could improve its perfor-
mance by continuing to take samples of the system and
produce more training instances, it took too much on-
Tine beam time to adeguately train the network.

Even if a training set were available, the network
suffered from a third problem. By generating training
instances through random SM changes and attempting
to learn (reverse) causal relationships, the network was
not directed toward specific solution methods for ad-
justing the BPMs. Potentially, a large number of SM
adjustments could produce the same BPM effects. The
network did not converge because the random training
data often included conflicting SM adjustment ex-
amples with very similar BPM results.

As a result of our experience in using neural tech-
nology, we rejected the general use of neural networks
for direct system control. Instead, we view them as
useful in their more traditional supporting roles of sub-
system identification, pattern classification, and fea-
ture recognition. In these roles neural networks still
prove useful for diagnostic tasks, beam structure rec-
ognition, and reference model control.

3.2. Methods for analytic control

The analytic technique for steering control relies on
beamline behavior consistent with a simple linear
model. After the expert system determines a set of
components that make up a steering section, it mea-
sures the derivative between SM power source currents
and BPM readings. The expert system calculates the
derivative empirically by adjusting power to the SMs
in the section and recording resulting changes in BPM
readings. The expert systern then builds an appropri-
ate system of equations and solves them using gaussian
elimination (reduction). The analytic method makes
no attempt to filter noise or eliminate component er-
rors. In general, this method provides an accurate base-
line solution given large signal-to-noise ratio and prop-
erly functioning beamline components. Once deriva-
tives are calculated for each SM/BPM pair, subsequent
adjustments due to beam drift do not require deriva-
tive re-evaluation. The system keeps track of solution
accuracy and adjusts derivative measures only when
they no longer match beamline behavior.

3.3 Methods based on fuzzy logic

We cannot expect a purely analytic solution to ad-
equately tune a beamiine in most cases, especially duor-
ing initial startup. One of the conditions that causes
difficulty for tuning is beam fluctuation (jitter). Fuzzy
logic is used in the beamline controller for reasoning
about real-valued data in the presence of noise or in
situations where analytic methods have failed. Fuzzy
jogic attempts to categorize real data sets with ambigu-
ous boundaries. An example is to classify real values
into categories such as near_zero, small_positive, and
small_negative. A single value can belong to more
than one of the categories with some degree of mem-
bership.

We may consider the data we receive from beamline
measuring devices as ambiguous, or imprecise, because
data measurement involves some ervor from an un-
known distribution and possibly from an unknown
source. We can capture a human operator’s reasoning
about this imprecise data by specifying linguistic vari-
ables comparable to the fuzzy sets which match the
operator’s (implicit) fuzzy categories.

The fuzzy logic steering solution used fuzzy rules
about BPM relationships to follow a hill-chimbing al-
gorithm towards a good solution. An example of a
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rule from the fuzzy steering system follows (in CLIPS
format):

(defrule rl
{bpm_ratio near_zero)
(bpmi_reading large positive)

{assert {move_sml large_negative))).

This rule instructs the system to modify the current
supplied to the first SM by a large negative amount
whenever the ratio between two subsequent BPM read-
ings are near zero and when the first BPM’s reading is
large and positive

Not only do fuzzy rules allow expert systems to rea-
son about real-valued data without crisp data bound-
aries, they also allow reasoning about how data will be
measured and evaluated. In the above example, the
expert system could modify the meaning of /arge_posi-
tive depending upon the context in which the term is
to be interpreted. This allows the expert system to
change the membership function associated with
large_positive depending on the specific problem be-
ing solved, the accuracy required, and the current state
of the system.

The fuzzy logic solver did a good job of quickly
moving to an approximately correct solution, but tended
to oscillate around a very accurate tune. The accuracy
of the fuzzy solution depended greatly on the quality
of knowledge placed in the system. For example, a
pure hill elimbing fuzzy system that only attempted to
minimize BPM error tended to find local minima.
When the knowledge base was modified to evaluate
BPM ratios and isolate specific magnets for adjustment,
the fuzzy solution tended to find better solutions
quickly. Knowledge about how and when to adjust
membership functions for fuzzy sets is equally impor-
tant for dampening oscillations near good solutions.
Mechanisms for determining evaluation criteria and
adjusting membership functions according to context
are essential parts of the controller.

3.4. Methods based on genetic algorithms

The genetic algorithm offers an appropriate heuris-
tic for focusing control because it can search large so-
lution spaces in non-linear domains. A genetic algo-
rithm uses a parallel search on a number of trial solu-
tions and uses a measure of the fitness of the resulting
state of the system for each trial along with solution
combination functions to generate a set of new trial

solutions [12, Chapter 15]. This approach supports
problem solving insituations where the system is not
behaving in a manner consistent with the knowledge
base. The genetic algorithm is particularly useful when
the controller must function using incomplete infor-
mation or when the system behaves abnormally due to
component failure or other unpredictable situations.

We implemented the focusing genetic algorithm
using genetic operators which modified magnet
strengths according to a fuzzy pattern. Fuzzy patterns
eliminate the need for a priori determination of mag-
net adjustment strengths and patterns. The focusing
genetic algorithm was built with the realization that
wire scanners cannot deliver real-time continuous feed-
back. Trial sclutions for the genetic algorithm were
evaluated by actual testing on the simulated (or real}
beamline. Since typical solution patterns can be de-
termined for focusing, we used a special genetic op-
erator to search the solution population for unwanted
solution patterns (as determined by the expert system}
and replaced them with more appropriate solutions.
Unwanted solution patterns may be specific patterns
which have performed poorly in the past, patterns which
have been explicitly prohibited through the knowledge
base, or patterns which may be predicted through di-
agnostics or other means. For example:

{-0.78, 1.40,-1.32}
{small_negative,
small_positive,
small_negative}
{small_positive,
small_negative,
small_positive}
{0.68,-0.91, 1.04}

Population member:
is evaluated as:

and replaced with:

which defuzzifies to:

In this example, the genetic algorithm is searching
for settings for three quadrupole magnets arranged as
a triplet. The expert system has information in its
knowledge base that triplets typically use a positive,
negative, positive current pattern. The expert system
has conveyed that knowledge to the genetic algorithm,
along with knowledge about replacing negative in-
stances of patterns with positive ones. The genetic al-
gorithm is then able to replace the unwanted pattern
{—+~} with the pattern {+ - +}.

3.4.1. Fuzzy pattern maiching
Fuzzy pattern matching and replacement guides the
genetic algorithm toward certain solutions and away
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from others according to knowledge about typical so-
lutions contained in the expert system. The algorithm
can still perform global search over the solution space
and converge on 2 solution differing from suggested
“good” patterns. 1t does this by only replacing the least
desirable patterns from the population during any one
generation. The least desirable patterns may be deter-
mined a priori, based on system constraints, or at run-
time, based on current system state. We found that the
fuzzy pattern matching solution focused the simulated
periodic line in fewer than 100 trials and to a greater
than expected accuracy.

Fuzzy pattern matching in the genetic algorithm
greatly enhances search speed by promoting certain
types of solutions that are known to be good solutions
in a specific domain. Knowledge about good solu-
tions can come from the expert system evaluating trends
in the population or from a priorl expert knowledge
provided by an accelerator physicist. As with a hu-
man expert, this pattern directed solver uses knowl-
edge about typical solutions to conduct a search within
the known solution space to fine tune a beam. The
fuzzy genetic algorithm is well suited for finding a
specific solution instance, once the general form of a
solution has been determined.

4. A synthesis of contrel modules

By incorporating the solution: metheds of Section 3
into 2 single system, we have developed a phase one
prototype for an integrated problem solver and used it
to correct many basic beamline tuning problems. By
medifying existing solution algorithms or adding new
sclution strategies, we can enhance the guality and
speed of the system within the current framework and,
indeed, generalize our solution to other particle beam
accelerators.

By placing the expert system as the top-level deci-
sion maker for the controller, we use expert knowl-
edge to break the control problem into solvable units
and then determine an appropriate solution strategy for
various beamline problems. Not only can the expert
system separate and distribute control tasks, it can also
determine which problems to solve, how to address
each problem, and the best order for handling the sys-
temn constraints. This top-down approach allows the
system to develop solutions based on general knowl-
edge of the entire beamline, as well as to make indi-

vidual adjustments as isolated units, when necessary,
by applying methods appropriate to each unit.

This modular decomposition of complex problems
into multiple interacting subcormponents is central to
our approach. The object oriented methodology pro-
vides data structures that “wrap” the submodules in a
module hierarchy, where each module contains knowl-
edge (procedures) deseribing its functionality, as well
as sets of methods for cooperating with other modules.
Together the interacting modules make up the iarger
system. This approach to problem solving 1s called by
the artificial intelligence research community a solu-
tion strategy based on the interactions of autonomous
intelligent agents and has been used in a number of
different application areas including electricity trans-
port management [8] and building environment con-
trol [71.

4.1, The results and planned extensions of our
phase one effort

During the evaluation of our prototype system, we
tested it against steering and focusing models using
the TRANSPORT, Vsystem, and noise filtering codes.
Through a series of informal tests we also evaluated
the tune time and accuracy against the skills of an ex-
pert beam physicist. Our controller repeatedly out per-
formed the human expert in both the speed and accu-
racy of the tune. Our controller was able 1o find-solu-
tions to difficult focusing problems which were not
solvable by the beam physicist without the use of a
modeling code. Our tests indicated that many of the
techniques described in this paper are indeed valuable
for accelerator control, and the success of our contrel-
ler running in simulation has led to the offer of beam
time for testing against real accelerator facilities at
Brookhaven National Laboratory.

Using knowledge gained during the first implemen-
tation of our research, we have prepared a plan for a
complete intelligent control system for accelerators. In
this planned system, an expert system coordinates the
activities of a set of independent processes, which in
turn control the smaller subsystems of the accelerator.
The expert system manages the tuning process by iden-
tifying and configuring subgoals based on an overall
goal for the accelerator. These subgoals are then ei-
ther subdivided further or assigned a suitable solution
strategy based on the goal and the current operational
state of the accelerator. An expert system equipped
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with a “toolbox” of control methods can overcome limi-
tations of any one control method by substituting a
specific control strategy based on a particular sub-
system goal. Figure 3 illustrates the architecture of
this design.

Although the expert system with general knowledge
ofthe control domain exists at the top level for coordi-
nation and control of beamline subcontrollers, smaller
domain-specific rule sets exist throughout™the object
oriented component module hierarchy. Distributing
knowledge throughout the system has a number of ad-
vantages:

i) Rule sets are typically smaller; large rule sets
indicate the need for breaking down the prob-
iem into smaller components.

il) Kuowledge resides at the appropriate level in
the system, so conirol objects can make do-
main specific decisions which are then coor-
dinated by higher level control objects.

iii) Reasoning is faster; the conflict set for any
one rule base is smaller, and independent ac-
tivations may be fired simultareously in the
distributed environment.

We are developing a new expert system shell with
enhanced capabilities not provided by CLIPS. The
current CLIPS system will be replaced by an expert
system shell designed to include four major features:

i) the ability to switch dynamically between data

and goal driven reasoning,

ii) structures supporting the parallel and distrib-
uted reasoning of modules,

iil} an object system with knowledge representa-
tion capability, and

iv) implicit linkage between reasoning objects,
beamline components, and Vsystem database
channels.

During initial startup of the beamline when little is
known about system state, goal-driven (backward
chaining) reasoning is inappropriate. Data-driven (for-
ward chaining) reasoning is then used to reason about
system behavior and to determine a specific goal which
is used to tune the beamline. Once a particular system
goal is identified, the control switches dynamically to
goal-driven reasoning and searches that part of the so-
tution space pertaining directly to those beamline com-
ponents usefutl in accomplishing the current goal. When
all system goals are satisfied, the system again returns

to data-driven reasoning to check for possible compo-
nent failures and to determine new tuning goals.

The concept of object models for accelerator sys-
tems is a methodology gaining a large following in the
accelerator control community. Work has been done
at numerous sites to develop an object framework for
describing accelerator control applications [16]. Our
object system is designed specifically to provide a con-
trol abstraction linkage between the intelligent controi-
ler and the actual physical system.

To build a framework capable of operation at mu}-
tiple accelerator installations, we are enhancing the
object system with the capability for greater problem
decomposition. This object model codifies the behav-
ior and effects of each component type, allowing im-
bedded low-level reasoning within objects. Compo-
nent specific knowledge is contained within the object
model itself rather than requiring that rule/fact rela-
tions be described explicitly in the expert system rule
base. Paralle} distributed reasoning is possible in the
system through distributed rule sets in low-level ob-
jects along with communication mechanisms which
allow for their coordination by higher-level objects.

Many of the control problems we encounter require
gradual refinement of fuzzy membership functions re-
Jated to linguistic variables in the rule set. This refine-
ment relates to the context dependent nature of fuzzy
membership functions and the ability to reuse fuzzy
rules in both coarse and fine grain solutions. Cur cur-
rent solution relies on the a priori description of a num-
ber of membership functions with increasingly smaller
vaiues. The expert system rule set guides the proper
adjustment of fuzzy membership functions depending
on the current state of the solution. For instance, dur-
ing an initial startup tune where the beam may be many
millimeters off axis, the value large_posifive includes
values from 5 to 10 mm. During a steady-state tune,
where only minute adjustments are necessary, the value
of large_positive includes values from 0.1 10 0.05 mm.
The same rule set for steering adjustment is used in
both cases.

5. Summary and conclusions

Ir: this paper, we have stressed the importance of a
knowledge intensive approach to complex problem
solving. By placing an expert reasoner as the top-level
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controller and decision maker, the system can develop
representations for problem solving and make expert
level decisions about how solutions should be devel-
oped. The expert system is able to use general knowi-
edge about the particle accelerator to produce appro-
priate strategies for either an entire problem domain,
such as steering, or for specific subsystems, such as
for a single periodic cell. This knowledge intensive
approach allows breakdown of the control problem into
solvable subcomponents. Such problem deconstruction
works well with object-oriented solutions where ex-
pert knowledge is encapsulated within the objects. The
expert system uses global knowledge to make sequen-
tial top-level decisions, such as “steer the upstream
section before proceeding to any downstream sections.”
The system uses the distributed intelligence resident
in multiple objects to make parallel decisions, such as
“match all beam pesition monitor objects with read-
ings outside error tolerance, then solve.”

A major benefit of our design is the ability to use
expert level reasoning to implement multipie heuristic
control algorithms. The reasoner makes knowledge-
based decisions about how to separate the tuning prob-
lem into solvable subproblems. Each subproblem is
then examined by another knowledge-based problem
solver or assigned to a control algorithm. The heuris-
tic algorithms we employ in our system include neural
networks, fuzzy logic methods, and genetic algorithms.
We also plan to integrate case-based reasoning capa-
bilities [ 10] for development of a case library for reuse
of successful control solutions. The expert reasoner
determines how a problem may best be solved by these
algorithms and creates objects for representing, com-
puting, and reasoning about the relevant beamline com-
ponents.

The continuation of our efforts will result in & ro-
bust system designed with many complementary con-
trol technelogies. First pass solutions come from
model-based methods using TRANSPORT, or from
knowledge based rule modules adapted from beam
control experts. Muitiple solution methods are avail-
able for use in cases where model-based control sirat-
egies fail. The controller will examine beamline com-
ponent characteristics, evaluate system parameters,
build object representations of subsystems, and dispatch
control strategies based on goals developed for each
subsystem. These subsystems will be solved either
sequentially or in parallel depending on over all sys-
tem state as determined by the expert system.

Work is continuing in the design of a new reason-
ing paradigm to allow switching between data and goal
driven problem solving. Neural network solution meth-
ods.are being reevaluated to determine whether more
advanced methods, including multi-network modeling
codes and fixed input learning algorithms, are appro-
priate for on-line adaptation and control. We are en-
hancing the knowledge base to include more detailed
knowledge related to specific control scenarios includ-
ing both detailed accelerator theory as well as site-spe-
cific information. We are enhancing the object sys-
tem to include embedded knowledge representation for
beam physics and linkage to Vsystem. This Physical
Access Layer (PAL) is an object-oriented construct to
handle low level data gathering, filtering, communica-
tion, and control information.

Finally, with the demonstrated successes of our con-
troller running in the simulated TRANSPORT envi-
ronment, as described carlier in this paper, we have
been given beam time at Brookhaven National
Laboratory’s Accelerator Test Facility, where our sys-
ter was tested in late 1996. Our system had further
tests at the Argonne accelerator facility during 1997.
The results of these tests are reported in [9].
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